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Abstract When Artificial Intelligence (AI) is applied in decision-making that
affects people’s lives, it is now well established that the outcomes can be bi-
ased or discriminatory. The question of whether algorithms themselves can
be among the sources of bias has been the subject of recent debate among
Artificial Intelligence researchers, and scholars who study the social impact of
technology. There has been a tendency to focus on examples where the dataset
used to train the Al is biased, and denial on the part of some researchers that
algorithms can also be biased. Here we illustrate the point that algorithms
themselves can be the source of bias with the example of collaborative filter-
ing algorithms for recommendation and search. These algorithms are known
to suffer from cold-start, popularity, and homogenizing biases, among others.
While these are typically described as statistical biases rather than biases of
moral import; in this paper we show that these statistical biases can lead di-
rectly to discriminatory outcomes. The intuitive idea is that data points on
the margins of distributions of human data tend to correspond to marginal-
ized people. The statistical biases described here have the effect of further
marginalizing the already marginal. Biased algorithms for applications like
media recommendations can have significant impact on individuals’ and com-
munities’ access to information and culturally-relevant resources. This source
of bias warrants serious attention given the ubiquity of algorithmic decision-
making.
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1 Introduction

There is growing awareness that the outcomes of algorithmic processes can be
discriminatory. The best known recent examples of algorithmic discrimination
happen to be ones where the data used to train machine learning algorithms
are systematically biased, leading to algorithms with discriminatory outcomes.
Several cases have been uncovered where using data about past decisions to
train systems to make policing (Angwin et al, 2016; Cardoso, 2020), hiring
(Ajunwa et al, 2016; Raub, 2018), medical (Ferryman and Pitcan, 2018; Ober-
meyer et al, 2019), or other decisions in the present means that historical
discrimination gets baked into the algorithm, perpetuating the bias in the
next generation of decisions.

Many of the suggested approaches for mitigating algorithmic bias involve
de-biasing datasets. For instance, Ajunwa et al (2016) outline data modifi-
cation processes that can prevent discriminatory decisions in the context of
hiring, and Ferryman and Pitcan (2018) suggest ways of diversifying medical
datasets in order to prevent bias. Obermeyer et al (2019) are an exception
to this pattern; they outline an alteration to the algorithm used to score pa-
tients’ health needs to fix the underestimation of Black patients’ illness sever-
ity. Sdnchez-Monedero et al (2020) review and evaluate several methods used
to mitigate bias in hiring algorithms. The general literature on algorithmic
fairness tends to remain agnostic as to the root causes of unfairness in algo-
rithms. For a critical review of this literature, see Mitchell et al (2021). The
main concern here is where in the workflow from data collection and algorithm
design to testing and implementation the causes of discriminatory outcomes
can be found. Because those causes are not restricted to the data prepara-
tion phases, de-biasing datasets is not always a viable strategy for mitigating
algorithmic bias.

One complication in pinpointing exactly how and where algorithms are
biased is the fact that bias has several different meanings. Some of these are
value-neutral, like technical definitions of bias in statistics, while others have
a moral character, implying either purposeful or unconscious discrimination.
Both broad types of bias will be implicated in demonstrating that algorithms
themselves can be biased. That algorithms introduce statistical biases is rela-
tively uncontroversial. One of the main claims to be defended is that statistical
bias affecting algorithms can cause discriminatory outcomes.

In Section 2, we examine a triad of options as to where bias might be lo-
cated: data, people, and algorithms. In Section 3 we introduce collaborative
filtering, and outline some of the most well known statistical biases known to
affect this class of recommendation algorithms, including the cold-start prob-
lem, popularity bias, over-specialization, and homogenization. In Section 4 we
offer evidence for a selection bias affecting iterative information filtering al-
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gorithms generally. Section 5 connects the statistical biases so far outlined
to empirical evidence suggesting that these algorithms produce biased out-
comes in recommendation and search systems. Section 6 offers some concluding
thoughts on why recognizing bias in algorithms themselves is important.

2 Data, People, or Algorithms?

That algorithms themselves are neutral is a popular refrain among Al re-
searchers. In an interview, deep learning pioneer Yoshua Bengio insisted that
“The algorithms we use are neutral” (Groen, 2018). On Twitter, Yann LeCun
declared, “People are biased. Data is biased... But learning algorithms them-
selves are not biased” (LeCun, 2019), then later doubled down on the claim,
tweeting, “ML systems are biased when data is biased...” in response to a
controversy over a photo upsampling program that seemed to systematically
render blurry people of color (POC) as white (LeCun, 2020).

2.1 Biased Data

The examples we began with are ones where historical discrimination in do-
mains like policing, hiring, and health care led to biased datasets, which when
used to train a machine learning classifier, automated and reproduced those
historical wrongs in another generation. In addition to biased datasets that
result in this way from systemic discrimination on the level of societies, bi-
ased datasets can also be the downstream result of a different kind of systemic
discrimination. Because of a lack of gender and racial diversity (among other
axes of difference) in Al as a field, developer teams often lack diversity. That
facial recognition algorithms are an order of magnitude less accurate for Black
female faces than for white male faces has been attributed to the lack of Black
and female faces among the training examples used to build facial recognition
systems. That lack of diversity in the training examples is in turn thought to
stem from a lack of gender and racial diversity among Al researchers (Buo-
lamwini and Gebru, 2018), either because computer vision datasets tend to
start with pictures of lab members, because developers looking for data tend
to look in places where they themselves might post pictures, or because media
representations are less diverse than the general population.

In these cases of biased datasets, ‘bias’ can have several distinct meanings.
In statistics and machine learning, ‘selection bias’ refers to a non-random
process being used to select a sample from a population. That the datasets
used to train facial recognition software oversample white male faces compared
to the population the software will be used on is a selection bias. A selection
bias in the data sampling often leads to poorer performance of models built
with those data (even when that selection bias has no moral implications).

The colloquial meaning of bias is closer to the definition Friedman and
Nissenbaum offer of “bias of moral import,” which is, “systematically and
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unfairly discriminat[ing] against certain individuals or groups of individuals in
favor of others” (Friedman and Nissenbaum, 1996). In the same example, the
fact that false identifications of faces are significantly higher for Black people
than white leads to unfair discrimination when facial recognition software is
used for purposes like finding crime suspects in crowds. Proportionally more
innocent Black people will be stopped and risk being falsely arrested than for
other groups. There have already been several documented cases of Black men
being falsely arrested due to inaccurate facial recognition.

As the facial recognition example shows, these two kinds of bias (statistical
and moral) can interact. Here is another example: If a police force stops and
frisks Black men without cause more often than other people (which has been
demonstrated to be the case in several jurisdictions in North America and Eu-
rope), that would lead to proportionally more charges for petty crimes among
that demographic group (or proportionally fewer charges for petty crimes for
other groups). This would be unfair discrimination. In this example too, a
selection bias is present, since the people being stopped are not chosen at
random, and because of the selection bias, discriminatory harm occurs.

2.2 Biased People

Another potential source of algorithmic bias is the people building algorithms.
There are documented cases where algorithms have been designed specifically
to create discriminatory outcomes. Redlining certain neighbourhoods as high
risks for mortgages, based on the racial composition of residents, gerryman-
dering election districts to disenfranchise some types of voters, or choosing to
target only men to show certain kinds of job ads (Dwoskin, 2018) are three
examples.

In most cases biased algorithm builders are presumably not motivated by
overt discrimination. A more common scenario is that products are built for
the benefit of one group, while inadvertently producing negative side-effects
for others, such as how YouTube’s click-maximizing algorithm benefits adver-
tizers at the expense of website users (Tufekci, 2018), or how online proctoring
software is built to meet the needs of university administrators at the expense
of students (Cahn et al, 2020).

Quite often bias is accidental and unforeseen, resulting from the limited
perspective of algorithm makers and business owners rather than gross neg-
ligence. Speech recognition algorithms that fail to work for people with non-
standard accents or difficulty speaking are one example. The choice of research
questions to pursue, or applications to develop can also overlook the needs of
people not on the radar of algorithm makers and business owners. An example
is how Apple’s health app was initially released without including a period
tracker, despite that being one of the primary uses for a health app among
people with uteruses (Perez, 2015). The oversight processes in place to ensure
safety, usefulness and performance of an algorithm can likewise fail to consider
the needs of some groups, like automatic soap dispensers that fail to reliably
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detect dark hands (Fussell, 2017). Even when algorithm builders think they
are aiming for inclusion, the needs of minority users and the systems of op-
pression in operation might not be well understood by those developing the
algorithms.

2.3 Biased Algorithms

Algorithms themselves are a source of bias that is often overlooked in reviews
of algorithmic bias (Barocas and Selbst, 2016; Kirkpatrick, 2016), which tend
to focus on discriminatory outcomes or data bias. Some articles mention the
possibility of bias in algorithms themselves, but only offer examples of biased
data or biased people (Garcia, 2016). An exception is Danks and London
(2017), who include “algorithmic processing bias” in their taxonomy of kinds
of bias. Their focus is bias in autonomous systems like self-driving cars, and
offer the example of using a biased estimator in order to minimize variance
if you have a small sample size. Another exception is Hooker (2021), who
makes a plea for looking beyond just data bias, arguing that model design
also contributes to bias, citing examples from work in facial recognition.

Here we expand on the point that algorithms themselves can be biased, and
apply it to the context of a popular class of algorithms used in recommendation
and search tasks. Previous studies of algorithmic bias in recommender systems
follow the general pattern of treating algorithmic bias as a matter of outcomes,
or as a data problem (Edizel et al, 2020). Below we review the statistical
biases known to exist in collaborative filtering algorithms, as well as a selection
bias inherent in a more general class of algorithms they fall into, suggesting
that the phenomenon is quite widespread. We then offer examples of how
those statistical biases translate into bias of moral import, particularly for
marginalized users of recommender systems and other information filtering
systems like search engines.

3 Bias in Collaborative Filtering

Collaborative filtering algorithms are used in popular recommender systems
like Amazon and Netflix, that show users items based on criteria like “Cus-
tomers who viewed this item also viewed” or “Because you watched...” To
generate these recommendations, first user profiles are constructed based on
a person’s explicit ratings of media or products, such as likes or stars, as well
as their implicit ratings generated from activity like clicks or viewing time.
To find recommendations suitable for a user with that set of likes and dis-
likes, their profile is compared to other users’ profiles to find close matches.
Items that were rated highly by other users with similar profiles, but that have
not been seen by the current user, are then recommended to that user. User
profiles are models of user preferences, and are regularly updated as the user
interacts with the system, with the goal of making the profile a more accurate
predictor of the user’s behaviour over time.
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Collaborative filtering can be contrasted with content-based recommenda-
tion algorithms which might instead look for similarities between the content
a user likes and other available content. Collaborative filtering depends on the
assumption that no user is unique, in that recommendations happen through
matching with other users. Where that assumption is violated (users who don’t
share the same tastes with anyone else in the system), collaborative filtering
can be expected to work poorly. If the most unique users turn out to be people
who belong to multiple minority groups, so there are a priori reasons for ex-
pecting that collaborative filtering might be biased in favour of the majority.
Below we outline a few of the specific ways in which collaborative filtering
algorithms are known to be biased. Olteanu et al (2019) catalogue a number
of additional biases that can occur at all stages of the software development
cycle for recommendation systems.

3.1 Cold-Start Problem

The cold-start problem is perhaps the best known bias affecting collaborative
filtering. Ironically, although collaborative filtering was intended as a replace-
ment for human reviewers, recommending new releases is a task collaborative
filters are uniquely unqualified to do. When a new item becomes available,
there are initially no ratings of it by any user. If there are no ratings of an
item by any user, then a collaborative filtering algorithm cannot recommend
the item to anyone, since recommendations are based on what other users have
rated. The tendency of platforms like Netflix and Amazon to push their new
offerings to the top of the recommendation list is somewhat justified, because
otherwise they would remain unknown. The job of the critic has been largely
replaced by recommendation algorithms, despite these algorithms’ inability to
do what critics do. Writ large, items that have been in the system longer will
build up more ratings over time, so be more likely to be recommended than
newer items.

This dynamic where older items are preferentially recommended over newer
ones would develop no matter how initial ratings are distributed initially, as
long as new material is added over time. This is a case where adding more data
to correct for an imbalance in the dataset would be difficult to implement. An
obvious approach would be to add synthetic ratings to ensure that all items
have a uniform number of ratings. When an item is new, there is little basis
on which to create synthetic ratings (without doing content-based recommen-
dation instead of collaborative filtering), so adding synthetic data to bump up
items with few ratings could lead to low quality recommendations. Using a
hybrid of content-based and collaborative filtering is explored by Schein et al
(2002).

From the perspective of users, the cold-start problem appears as a (small
c¢) conservative bias, where popular but older items are hard to avoid, and
new things are harder to find. Likewise, the earlier an individual user gives
a positive rating to an item, the more of an effect that item will have on
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their future recommendations. A youthful preference for Lady and the Tramp
would affect the user’s recommendations, and therefore the user’s viewing
habits and ratings, for the entire life of their profile, possibly leading to a
recommendation for Dumbo twenty years later, despite their tastes having
matured. In contrast, a more recent interest in documentaries would have fewer
total ratings associated with it, and thus exert relatively less of an effect on the
user’s recommendations. Weighting ratings by recency is a way of mitigating
that effect (7).

3.2 Popularity Bias

A closely related problem is known as popularity bias (Herlocker et al, 2004;
Steck, 2011), where very popular items are likely to get recommended to every
user (and since recommendations make ratings more likely, popular items tend
to increase in popularity). So even a user whose only positive ratings are for
medieval Persian editions of ancient medical texts might get recommendations
for The Very Hungry Caterpillar, simply because no matter what you buy, it’s
likely that someone who bought the same has also bought The Very Hungry
Caterpillar. Relatedly, a user might have bought Fifty Shades of Gray because
they are writing a dissertation about representations of kink in popular culture,
and end up having to wade through pulp romance novel recommendations that
come highly rated by Fifty Shades of Gray fans, despite having no interest in
the genre.

Abdollahpouri et al (2019) show that popularity bias affects some groups of
users more than others, with users who prefer mostly “long-tail” items (items
that are not popular overall) being most adversely affected. One approach used
by ? to mitigate popularity bias is to add weights to the recommendations,
such that when users are more similar, their recommendations are given more
weight, and when users are less similar, their recommendations are given less
weight. Another approach that may benefit users who prefer long-tail items
would be to track the average popularity of a user’s highly rated items, and
weight the recommendations of items based on their popularity accordingly.

Profile injection attacks manipulate the probability of an item being rec-
ommended through the creation of fake user ratings. An infamous example
is how the Amazon page for a book by anti-gay televangelist, Pat Robert-
son, listed an anal sex guide as a recommendation, after pranksters repeatedly
viewed the two items together in order to form an association (Olsen, 2002).
This trick has also been used as a marketing ploy. Profile injection attacks
illustrate the extent to which recommendations depend on popular patterns
of ratings of other users.

3.3 Over-specialization

Over-specialization occurs when a recommender algorithm offers choices that
are much more narrow than the full range of what the user would like. In
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statistical terms this is not a problem of bias but of variance (the expectation of
how far a variable deviates from its mean). Adamopoulos and Tuzhilin (2014)
treat over-specialization as a problem stemming from an exclusive focus on
prediction accuracy, while overlooking user-satisfaction, which might depend
also on there being enough variety in recommendations.

Intuitively, the problem arises because items similar to those previously
liked by a user will have a high probability of also being liked, even though
what the user wants might be a wider range of recommendations that cover
their preferences more fully. For example, the user may not want to get stuck
in a rut of only watching teen comedies after one nostalgic viewing of Mean
Girls, even if they do also like Clueless, and FElection.

(Steck, 2011) mitigates this bias by preferentially using items from the tail
of a user’s rating distribution as the basis for matching profiles. Adamopou-
los and Tuzhilin (2014) mitigate both over-specalization and the popularity
bias, using a “probabilistic nearest neighbors” method. This involves sampling
neighbors probabilistically, weighted based on their distance. This results in
user recommendations coming from a variety of distances, which diversifies
the recommendations, while still treating closer neighbors as most trustwor-
thy. This method outperforms standard methods on both prediction accuracy
and utility-based ranking (which takes into account users’ perceptions of the
quality of the recommendations.

3.4 Homogenization

Another issue for which there is some scattered evidence is homogenization.
Popularity bias refers to how single items that are very popular are over-
recommended. Homogenization is an effect over the dataset as a whole, where
the variance of items recommended to all users combined decreases over time.
One hypothesis for how this may come about is that users’ preferences either
for diversity or popularity in their media consumption is not captured by
collaborative filtering algorithms, as described by Abdollahpouri et al (2019).
All users are treated as though they prefer popular media.

A 2008 study found that since online journals became common, which
increased the availability of academic literature, citation practices have nar-
rowed. Fewer journals, and fewer articles are being cited, suggesting that peo-
ple are reading less widely, not more (Evans, 2008). Evans attributes the effect
to the greater efficiency of finding sources online, by following a few links, com-
pared to browsing library stacks, where it takes longer to find specific sources,
but you end up seeing a greater variety of papers in passing.

A recent study (West, 2019) suggests that GoogleScholar’s recommenda-
tions may have had a homogenizing effect on citation practices. More citations
are going to the top 5% of papers by citation count, and a smaller propor-
tion of papers are being cited overall since the release of GoogleScholar. When
the recommendation systems we use are designed to only show us items that
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other users have interacted with, rather than sampling from the entire dataset
equally, this narrowing of recommendations is likely to happen.

The phenomenon of “filter bubbles” or “echo chambers” is often blamed on
the laziness or closed-mindedness of individuals, who can’t be bothered to look
beyond their social media feeds, or who don’t want to do the work of consuming
media that might challenge their comfortable opinions. However filter bubbles
may arise in part as a result of the homogenization that is characteristic of
recommender algorithms. It may not be that users fail to venture outside
their bubbles, but rather that the algorithm traps users inside. A comparison
of several recommendation algorithms in terms of how author gender affects
book recommendations, found that some algorithms produce recommendation
lists that are “more imbalanced than the item universe” even when user ratings
are more balanced (Ekstrand et al, 2018b). In this case it is abundantly clear
that the data is not the only problem. The algorithms is contributing bias over
and above any bias that may exist in the data.

4 Selection Bias in Information Filtering

For many popular recommender systems, ratings are sparse relative to the
number of items available. For example, most of the items available for sale
on Amazon will never be bought or viewed by most users. ML algorithms,
including those used to predict user preferences, are very often designed to have
high prediction accuracy, which in this case is a measure of the probability that
the user will indeed like an item if that item is recommended to the user. It
is possible to maximize prediction accuracy without capturing the full variety
of items that the user would like, however. Accuracy and precision can trade
off. An example might be taking the safe bet of only recommending sequels to
a user’s favorite movie, and not bothering to try to recommend anything else,
which might generate only likes, but would miss many other movies that the
user would also like.

If the missing data (i.e., the items that are not rated at all) were missing at
random, then the possibility of low precision while accuracy is high would be
a minor worry, because the algorithm would not be able to confine its recom-
mendations to just one small corner of the space of possibilities. The ratings
are not missing at random in models that are learned iteratively over time
from user ratings, however (Stinson, 2002; Chawla and Karakoulas, 2005). As
the recommender narrows in on the user’s tastes, it is simultaneously narrow-
ing the space of possibilities that it can recommend, and thus the scope of the
data available to it on which to improve its model of the user.

Many of the ratings the system gets, whether explicit or implicit, are for
items that the user has seen because the system recommended the items. The
system cannot learn from the user’s hypothetical ratings of things the user
has not been shown. In order to do its job well, the algorithm needs a broader
base of ratings, including confirmations that the user indeed does not like
items that the model predicts the user would not like. In virtue of having its
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source of training data tied to the outputs of the user profile it is building,
the collaborative filtering system imposes a selection bias on its own training
data, then iteratively exacerbates that bias as it improves its model of the user
over time.

Several of these biases stem from the number and timing of ratings not
being evenly distributed among items in the dataset, and are exacerbated by
the fact that recommendations influence what gets seen and therefore rated at
later times. These biases affect different users differently, and additional biases
originate from the fact that users are not uniformly distributed in preference
space. How much the user values novelty, how much the user’s tastes have
changed from their starting point, and how far their tastes lie from the mean
can all vary. Many users’ preferences will cluster around popular items, but
other users will cluster in smaller niche groups (Horror fans, perhaps), and still
others will have rare preferences (like our medieval Persian medical text fan), or
atypical combinations of preferences (a fan of both Death Metal and musicals,
for example). Neophytou et al (forthcoming) show that the popularity of the
items a user likes affects the accuracy of recommendation prediction, such that
users with niche tastes get less accurate recommendations.

Collaborative filtering algorithms belong to the broader class of information
filtering algorithms. Information filters choose items from information streams
to deliver to users based on a model of the user’s preferences, or a particular
topic. Some common examples are a search engine returning documents that
include a user provided search term, or a personalized newsfeed delivering
articles on a given topic to a user’s inbox. Spam filters are also information
filters, but where the selected items are redirected away from users.

Information filters that continuously update their predictive model based
on feedback (e.g., what the user clicks on), to improve performance during
operation are alternatively called “online,” “active,” or “iterative”. Here we
use the term iterative information filtering. The sequence of events is a loop
starting with a recommendation step based on the initial model, then the user
is presented with the recommendations, and chooses some items to interact
with. These interactions provide explicit or implicit feedback in the form of
labels, which are used to update the model. Then the loop repeats with rec-
ommendations based on the updated model.

The user’s interactions change the model, based on what was recommended,
which in turn affects what can be recommended at later stages. Just as in the
special case of collaborative filtering, iterative information filtering introduces
a selection bias (Stinson, 2002; Chawla and Karakoulas, 2005). Since labels
are only provided for items that were recommended, the missing at random
assumption is violated. This bias is investigated in Sun et al (2018), who refer
to it as “iterated algorithmic bias”. One of the main effects of the selection
bias is more homogeneous recommendations (Sun et al, 2018), narrowing the
space of items available for recommendation.

The homogenizing bias occurs in iterative information filtering contexts
generally. For some information filtering tasks, it may not be a bad thing for
recommendations to become more homogenous over time. If the purpose of
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the filter is to find articles relevant to a very particular interest, then it might
be desirable for the filter to become progressively better at picking out that
one specific topic. But in contexts like GoogleScholar searches, increasingly
homogenous search results for a given search term would typically be a negative
outcome. For instance, if the user is doing a literature search, they want the
full complement of relevant articles, not just the most cited ones. Likewise,
if the user is looking for citation information for a specific article, an exact
match is more desirable than the most cited match in that neighborhood.

A number of ad hoc strategies are described for mitigating this bias. These
include diversifying the collection of items that are used to learn the next iter-
ation of the model by estimating labels for items that were not recommended
(Stinson, 2002), and explicitly modeling the censoring mechanism to correct
the bias (Chawla and Karakoulas, 2005).

5 Statistical Bias Can Cause Discrimination

Uncorrected statistical bias has negative effects on the performance of algo-
rithms, which is bad for users, as well as media producers and advertizers who
stand to gain from accurate recommendations. The negative effects are worse
for some users than others, and the implications go well beyond occasionally
having to scroll past unwanted recommendations.

As algorithms mediate more and more of our access to information, access
to services, and decisions about our lives, their uneven performance can become
a significant equity issue. The biases described here have the greatest negative
effects on users located at the margins of preference distributions: people with
unusual tastes, or unique combinations of tastes. The people on the margins of
distributions are literally marginalized people, whom non-discrimination law
is supposed to protect (Treviranus, 2014).

People from minority communities have noted that recommender algo-
rithms do not work well for them. Noble (2018) documents the ways that
search algorithms fail to serve the needs of black women. One of her exam-
ples is a hair salon owner who struggled to get her business to show up as a
recommendation on Yelp when you search for “‘African American,” ‘Black,’
‘relaxer,” ‘natural,”’ as keywords. Complaints about culturally inappropriate
recommendations, like white hairdressers being recommended for those search
terms, or Christmas movies being recommended to non-Christians, are com-
mon online. Popularity and homogenizing biases may be at fault in those
examples. A related issue arises when the recommender system does figure
out that a user belongs to a minority group, but overfits to an essentialized
version of that identity. That you cannot escape ads for Rupaul’s Drag Race
if your online presence reveals any interest in LGBTQ+ issues stems from
over-specialization.

There is some empirical evidence for differential effects of algorithmic bias
on demographic groups. Mehrotra et al (2017) investigate whether search en-
gines “systematically underserve some groups of users.” Ekstrand et al (2018a)
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find significant differences in the utility of recommendation systems for users
of different demographic groups (binary gender, and age), although not ex-
clusively benefitting the larger groups. Zafar et al (2017) discuss “disparate
mistreatment,” which arises when a classifier’s misclassification rates differ
across social groups. An example (which stems from data bias) is how the
COMPAS algorithm made more false positive errors with black defendants,
labeling people who would not reoffend as being high risk, while making more
false negative errors with white defendants (Angwin et al, 2016).

6 Conclusions

Perhaps the greatest source of harm is that the illusion of neutrality algorithms
have can be exploited in attempts to roll back protections against discrimi-
nation. Appeals to the neutrality of algorithms as a cover for discriminatory
outcomes has become a fairly common trope. In 2019 the UK education secre-
tary came under fire for apparent discrimination in the algorithmically calcu-
lated A-levels scores that were to replace university entrance exams cancelled
because of COVID-19 (Meadway, 2020). Initial government responses to the
controversy pointed to “the algorithm” as a neutral decision-maker. Likewise,
when a viral tweet revealed that the new Apple credit card was systemat-
ically giving men higher credit limits than women with identical or better
credit, the initial response from the company was to defend “the algorithm”
(Webb and Martinuzzi, 2019). When the Stanford Hospital’s triage algorithm
put administrators who do not deal with the public ahead in line for vaccines
compared to residents working in COVID wards, this same pattern of blaming
the algorithm was repeated (Guo and Hao, 2021).

In 2019 the US government proposed changes to the Fair Housing Act that
would have removed protection against discriminatory outcomes in housing in
some cases where algorithms are involved in the decisions. This part of the
proposal (which was rejected after public comment) included removing pro-
tection for cases where housing decisions that had discriminatory effects were
made using a third party algorithm that is “standard in the industry” and be-
ing used for its intended purpose. It also included cases where a neutral third
party testifies that they have analyzed the model used to make housing deci-
sions, found that its inputs are not proxies for protected characteristics and it
“is predictive of risk or another valid objective” (Department of Housing and
Urban Development, 2019). Collaborative filtering, as shown here, is standard
in its industry, does not use proxies for protected categories, and its objec-
tive function, prediction accuracy, is a valid objective, however the algorithm
systematically produces discriminatory results. By analogy, housing decisions
could likewise be made using algorithms that without being explicitly designed
to discriminate, nevertheless do.

We have discussed several types of statistical bias that are inherent in the
very logic of collaborative filtering: a class of machine learning algorithm that
is in very widespread use. These biases are neither the result of biased datasets,
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nor of algorithm builders’ personal biases. They are the result of assumptions
made in the design of the algorithms themselves. Fixing biased datasets and
improving the ethical behaviour of AI workers are also needed steps, but they
will not eliminate all sources of bias in machine learning, because there is also
bias inherent in algorithms themselves. These are not simply value neutral
statistical biases. When marginalized populations are literally on the margins
or tails of distributions of user data, statistical biases cause discriminatory
outputs.
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