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Introduction 

Connectionist models are widely used in the cognitive sciences, and well beyond. This 
is so despite the fact that some critics have charged that we can’t learn about cognition 
using connectionist models (Fodor and Pylyshyn, 1988). Although researchers who use 
connectionist models have offered a number of defenses of their methods (Smolensky, 1988; 
McClelland, 1988), and there is growing empirical evidence suggesting that these models have 
been successful in advancing cognitive science, there is no consensus on how they work. This 
chapter explores the epistemic roles played by connectionist models of cognition, and offers a 
formal analysis of how connectionist models explain. 
 

The question of what sorts of explanations connectionist models offer has not received 
much (positive) attention. Understanding how these explanations work, however, is essential 
in evaluating their worth, and answering questions such as, How convincing is a given model? 
What makes a connectionist model successful? What kinds of errors should we look out for? 
 

For the sake of comparison, I begin with a brief look at how other types of 
computational models explain. Classical AI programs explain using abductive reasoning, or 
inference to the best explanation; they begin with the phenomena to be explained, and devise 
rules that can produce the right outcome. Including too much implementation detail is 
thought to hinder the search for a general solution. Detailed brain simulations explain using 
deductive reasoning, or some approximation to it; they begin with the raw materials of the 
system and first principles they obey, and calculate the expected outcome. Here, inaccuracies 
or omissions of detail can lead to incorrect predictions. Connectionist modeling seems to 
combine the two methods; modelers take constraints from both the psychological phenomena 
to be explained, and from the neuroanatomical and neurophysiological systems that give rise 
to those phenomena. The challenge is to understand how these two very different methods 
can be a combined into a successful strategy, rather than a failure on both counts. I’ll focus 
on the problem of why using neural constraints should be a good strategy, even if those 
neural constraints aren’t correct in their details. 

 
To answer this question I look at several examples of connectionist models of 

cognition, observing what sorts of constraints are used in their design, and how their results 
are evaluated. The marks of successful connectionist models include using structures roughly 
analogous to neural structures, accurately simulating observed behavioral data, breaking 
down when damaged in patterns analogous to neurological cases, and offering novel, 
empirically verifiable predictions. 

 
I argue that the point of implementing networks roughly analogous to neural 

structures is to discover and explore the generic mechanisms at work in the brain, not to 
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deduce the precise activities of specific structures.  As we will see, this method depends on the 
logic of tendencies:  drawing inductive inferences from like causes to like effects.  This can be 
combined with neuropsychological evidence, which is evaluated using graph theoretical 
reasoning. 
 
How Computational Models Explain 
 

Computational models are especially important in cases where experimenting directly 
on the target system is not practicable, or the system is very complex. Opening a human 
skull and poking around is very invasive, so this kind of intervention can only be done in 
exceptional cases like during treatment of Parkinson’s disease or epilepsy (Engel et al., 2005). 
In these rare cases, single cell recordings and electrical stimulation interventions can 
sometimes be done on awake, behaving patients, providing important validation of models 
arrived at by other means. These studies are necessarily of short duration, and usually are 
restricted to particular brain regions, making them quite limited in terms of what can be 
investigated. Furthermore, these recordings are made from brains affected by pathology, and 
usually in patients taking medication (Mukamel and Fried, 2012). Care must be taken when 
drawing inferences from studies of atypical brains to neurotypical populations. 
 

Several non-invasive means for indirect measurement from and intervention on human 
brains are also available. Technologies like Transcranial Magnetic Stimulation, Positron 
Emission Tomography, functional Magnetic Resonance Imaging, and Electroencephalography 
all provide valuable information about human brain functioning, but all of these methods 
face practical limitations like noise and limited spatial or temporal resolution. 
 

Human experiments can be supplemented by experimenting on model species like sea 
slugs, mice, or macaque monkeys, but these animal models also face limitations. Most animals 
can’t perform complex laboratory tasks, and few if any can give verbal feedback, making it 
very difficult to investigate higher cognitive processes. In addition, it cannot be taken for 
granted that the brains of non-human animals process information in the same way that 
human brains do. 
 

Human brains are also extremely complex, consisting of on the order of 100 billion 
neurons, each with thousands of synaptic connections on average, not to mention the 
elaborate structures within each neuron, the chemical soup surrounding them, and all the 
other cells in the brain whose functions are only beginning to be understood. Computational 
models have the capacity to quickly analyze how complex systems evolve over time, and/or 
in a variety of situations, making them invaluable for investigating human brain functioning. 
 
Explanation in Classical AI 
 

Other chapters of this volume are dedicated to the history and explanatory uses of 
classical AI, but for our purposes here, a few brief notes will be helpful. Consider   first the 
birthplace of classical AI: McCarthy et al.’s (1955) Dartmouth Proposal.  In this proposal it 
is conjectured that “every aspect of learning or any other feature of intelligence can in 
principle be so precisely described that a machine can be made to simulate it” (McCarthy et 
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al., 1955). The authors optimistically suggest that one summer would be sufficient to make 
significant progress on the problem of machine intelligence. The idea is that we can come to 
understand intelligence by precisely constructing a machine that reproduces the phenomenon. 

More details about how this method is meant to work are found in Newell & Simon’s 
pioneering 1961 paper.  Newell & Simon begin by analyzing behavioral phenomena into 
protocols :  transcripts of subjects speaking aloud about their thought processes while they 
solve a problem.  The AI project is then to “construct a theory of the processes causing the 
subject’s behavior as he [sic] works on the problem, and to test the theory’s explanation by 
comparing the behavior it predicts with the actual behavior of the subject” (Newell and 
Simon, 1961, 2012).  
 

It is clear from the section of the text titled “Nonnumerical Computer Program as a 
Theory” that Newell & Simon intend for their programs to be scientific theories that explain the 
behavioural phenomena. At the time, the “Received View” of scientific theories (see Winther, 
2016), supposed that theories are sets of statements cast in predicate logic, and the prevailing 
deductive-nomological account of scientific explanation (Hempel & Oppenheim, 1948) supposed 
that empirical observations, such as the subjects’ problem solving behaviour, could be explained by 
logically deducing observation statements from statements of laws and antecedent conditions. For 
Newell & Simon, the antecedent conditions would correspond to the input problem, the theory 
would be the sequence of symbolic expressions contained in the program, and the logically 
deduced outputs of the program would be the observation statements. At the heart of their 
approach is the postulate later dubbed the “physical symbol system hypothesis” (Newell and 
Simon, 1976), that the processes going on inside the subject are, like their program, operations 
on symbols.   
 

Established scientific theories can be used to deduce predictions, but Newell & Simon were 
still at the theory-building stage.  The defense of their physical symbol system hypothesis “lies 
in its power to explain the behavior” (Newell and Simon, 1961, 2012). In other words, Newell 
& Simon were judging the success of their AI program as a theory of probem solving by 
comparing its output to human behavior. A program that counts as a good theory should 
produce output that matches the known behavioral data. The fact that the program gives 
rise to the same output is a reason for believing that the cognitive process might be the same 
as the program,. This is an abductive inference, or an inference to the best explanation. The 
inference has the form, 

T → O    O 
   T  (1) 

 
where T stands for the theory/program, and O for the observed behavior. If the program 
produces the right output, it is a candidate explanation of the observed behavior, and in the 
absence of any other adequate explanation, which was plausibly the case in 1961, that 
program is by default the best explanation. 
 

Newell and Simon’s defense of the physical symbol system hypothesis—the 
assumption that any explanation of cognition should take the form of symbol 
manipulations—is that making this assumption led to a string of successful explanations of 
cognitive tasks. Phenomena that previously could not be explained suddenly became 
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tractable with the help of that one trick. As they say, “The processes of thinking can no 
longer be regarded as completely mysterious” (Newell and Simon, 1961, 2016). One 
reasonable criterion to use when deciding between candidate explanations is unity; a single 
assumption that helps to explain many phenomena is preferable to multiple assumptions, all 
else being equal. 

 
A more contemporary statement of this strategy can be found in Coltheart et al.’s 

defense of classical AI models of reading. They say, “the adequacy of the theory can be 
rigorously assessed by simulation. Are all the effects observed in the behavior of people when 
they are carrying out the cognitive activity in question also seen in the behavior of the 
program...?” and “if there is no other theory in the field that has been demonstrated through 
computational modeling to be both complete and sufficient, resting on laurels is a reasonable 
thing to do until the emergence of such a competitor” (Coltheart et al., 2001, 204). This 
clearly describes inference to the best explanation. 

 
 

Explanation in Realistic Brain Simulations 
 

“Simulation” has been used in the previous examples in a way that is common in 
discussions of cognitive models, but notably different than its meaning in other fields. In 
physics and climate science, what I’ll call a true simulation starts from a fundamental theory, 
usually consisting of differential equations that describe the behavior of elementary entities 
like particles. A true simulation then churns through calculations based on these equations to 
generate a description of the state of the system at various time points (Humphreys, 1990). 
Often the purpose is to predict outcomes like weather forecasts, cosmological events, or the 
properties of a newly synthesized material. In true simulations, the inference is deductive, 
and has the form, 

T → O    T 
    O  (2) 

 
where T stands for the fundamental theory as instantiated in the program, and O for the 
observed outcome. In practice, true simulations are not perfect deductive tools; the starting 
point may not correspond exactly to the state of the world of interest, and numerical 
approximations are generally needed to solve the fundamental equations. 
 

Some approaches to computational modeling in cognitive science aspire to model the 
brain from the bottom up, starting by modeling brain anatomy and/or physiology in detail, 
like true simulations. The goal of the Blue Brain Project is “to simulate the brains of 
mammals with a high level of biological accuracy and, ultimately, to study the steps involved 
in the emergence of biological intelligence.” (Markram, 2006). Another large-scale, 
anatomically detailed simulation by Izhikevich and Edelman incorporates “multiple cortical 
regions, corticocortical connections, and synaptic plasticity” (Izhikevich and Edelman, 2008, 
3593). Eliasmith’s Spaun focuses on “explaining how complex brain activity generates 
complex behavior” with a simulation that generates “behaviorally relevant functions” 
(Eliasmith et al., 2012). In these projects, getting the anatomical and physiological details 
correct is a high priority. 



5  

Explanation in Connectionist Models 
 

Connectionist models of cognition, in particular the Parallel Distributed Processing 
(PDP) approach, likewise incorporate details of neural anatomy and physiology. As the 
introduction to the PDP ‘bible’ states, “One reason for the appeal of PDP models is their 
obvious ‘physiological’ flavor: They seem so much more closely tied to the physiology of the 
brain than are other kinds of information-processing model” (McClelland and Rumelhart, 
1986, 10). Although this statement suggests an intention to model the physiology of the 
brain, the physiological similarities between PDP models and real brains are quite loose, 
unlike true simulations, which try to get the details exactly right. 
  
 

Like classical AI, connectionist models have the primary aim of reproducing cognitive 
phenomena. It is not immediately obvious how classical AI’s top-down methods can be 
combined with brain simulation’s bottom-up methods. Of particular concern is how 
incorporating neural constraints is meant to help when these constraints are taken only very 
loosely If we view connectionist modeling through the lens of classical AI and deductive-
nomological explanation, it might look like the inference structure is only a slight variation on 
Inference 2, such that: 

T∗  → O     O      t1, ..., tn ∈ T∗

 
T    (3) 

 
where T∗  is a model that loosely approximates T, and t1, ..., tn  are statements from T 
(describing physiological constraints on brains) that are included in the model T∗ .  
 

This assumes that the purpose of adding physiological constraints on brains is to 
increase the strength of the inference to T. However, if n is small relative to the number of 
facts in T, the benefit of adding them to the premises would be negligible, which would 
undermine connectionism’s claims about the importance of physiological plausibility. Another 
problem is that the model T∗  only loosely approximates T. In order to make an inference to 
the best explanation, T would need to be established as a candidate explanation for O, but 
here it is T ∗ that implies O. If this were an accurate interpretation of connectionist 
methodology, these would be serious problems, however, inference 3 gets connectionist 
methodology very wrong. 
 

During the period between 1961 and 1986, the ‘Received View’ of scientific theories 
and the corresponding deductive-nomological account of scientific explanation were largely 
scrapped (see Woodward, 2017). I don’t think connectionists have the aim of constructing 
theories at all, but rather models (see Morgan and Morrison, 1999; Winsberg, 2001; Bailer-
Jones, 2009 for accounts of scientific modeling). With this in mind,, we shift from interpreting T 
as a theory that entails all the facts about the target system, to interpreting T as the target system 
itself (or in propositional terms, we can think of this as the set of all facts that are true of the 
target system).  
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In the next section I analyze several examples of connectionist modeling work. I argue 
that connectionist models are meant to explore the mechanisms operative in the target system. 
On this account, explaining cognitive phenomena using connectionist models involves 
reasoning about mechanisms, which operates using the logic of tendencies. In Stinson (2018), 
I connect this argument about how connectionist models explain to the philosophical 
literature on idealization in modeling, and explore examples from other scientific fields where 
abstract, idealized models likewise offer explanatory advantages over highly detailed models. 
 
Connectionist Explanation Examples 
 

In this section I look in some detail at examples of connectionist models from several 
areas of cognitive science research. I begin by looking at the models described in De Pisapia 
et al’s (2008) review of connectionist models of attention and cognitive control. By looking 
closely at how the studies are described, I discern four criteria by which the success of these 
models is judged. Consideration of models from several other areas of cognition confirm that 
connectionist models of cognition typically follow this pattern. 
 

First, the models reviewed in De Pisapia et al. (2008) all try to capture known 
neurophysiological characteristics of the brain.  For instance, many of the models implement 
feature maps corresponding to the representations computed in brain areas V1, PP and IT. 
Some of the models also capture more specific details about hypercolumns, patterns of 
inhibitory connections, neuronal dynamics, etc.  This reflects the belief that “models which 
make strong attempts to incorporate as many core principles of neural information processing 
and computation as possible are the ones most likely to explain empirical data regarding 
attentional phenomena across the widest-range of explanatory levels” (De Pisapia et al., 2008, 
423).  But importantly, the neural plausibility is always limited to general or core features, not 
every detail.  
 

The second criterion is that the models are expected to simulate or replicate known 
empirical results from psychology. For instance, “Simulations using biased competition 
model[s] were found to be successful in accounting for a number of empirical results in visual 
search” (De Pisapia et al., 2008, 431). The competing feed-forward models are evaluated in 
the same terms: “these models have been effective in capturing the known neurobiology of 
low-level visual processing, while at the same time simulating findings from the empirical 
visual search and natural scene viewing” (De Pisapia et al., 2008, 432). 
 

Third, the models are judged based on their ability to explain clinical phenomena, 
like the cognitive effects of brain lesions and other neurological conditions. The models need 
both to “agree with behavioral results coming from the basic experimental paradigms and 
with the data from brain-damaged patients suffering from attentional impairments... the true 
strength of these models lies in their ability to model the qualitative pattern of impairments 
associated with neuropsychologically-based attentional disorders, such as the spatial neglect 
syndrome” (De Pisapia et al., 2008, 432). 
 

Fourth, many of the models generate predictions about what the result of novel 
experimental scenarios should be, which can later be verified in the lab. One model 
“provided novel predictions about how patients with object-based neglect might perceive 
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objects when they are joined with cross-links or brought towards each other” (De Pisapia et 
al., 2008, 431). In another case, “reaction time slopes... obtained by model simulations were 
successful in predicting subsequent psychophysical investigations” (De Pisapia et al., 2008, 
431). 

 
These four criteria for successful connectionist modeling of cognition are also apparent 

in many other studies.  For example, O’Reilly et al.’s model of working memory “is 
biologically plausible.  Indeed, the general functions of each of its components were motivated 
by a large base of literature spanning multiple levels of analysis, including cellular, systems, 
and psychological data” (O’Reilly and Frank, 2006, 312).  In addition to simulating “powerful 
levels of computational learning performance” (O’Reilly and Frank, 2006, 284), it also models 
clinical results by testing “the implications of striatal dopamine dysfunction in producing 
cognitive deficits in conditions such as Parkinsons disease and ADHD” (O’Reilly and Frank, 
2006, 313). McClelland et al.’s model of memory likewise tries to be “broadly consistent with 
the neuropsychological evidence, as well as aspects of the underlying anatomy and physiology 
(McClelland et al., 1995, 419). Suri and Schultz (2001) model the anatomy of the basal 
ganglia, including only pathways that exist in the brain and through which feedback is 
thought to actually travel; and Billings et al. (2014) design the units in their “anatomically 
constrained model” to match properties like the diameters and densities of granule cells and 
mossy fibers in the cerebellum. 
 

Sejnowski et al. (1988), focusing on vision, describe connectionist models as 
“simplifying brain models” which “abstract from the complexity of individual neurons and 
the patterns of connectivity in exchange for analytical tractability” (Sejnowski et al., 1988, 
1301). One of the advantages they list of connectionist modeling over experimental 
techniques is that “New phenomena may be discovered by comparing the predictions of 
simulation to experimental results” and they note that “new experiments can be designed 
based on these predictions” (Sejnowski et al., 1988, 1300). The models they describe are not 
only consistent with previous experimental measures, they also make “interesting predictions 
for ... responses to visual stimuli” (Sejnowski et al., 1988, 1303). 
 

Plaut et al. (1996) likewise try to simulate both experimental results, and the patterns 
of breakdown in clinical cases in their model of reading, as well as generating testable 
predictions. Some of the empirical results that the model replicates are that high-frequency and 
consistent words are named faster than low-frequency and inconsistent words, and that these 
two effects interact (Plaut et al., 1996, 7-8). In addition, “damaging the model by removing 
units or connections results in a pattern of errors that is somewhat similar to that of brain-
injured patients with one form of surface dyslexia” (Plaut et al., 1996, 8). Finally, the 
assumptions of the model can be used “to derive predictions about the relative naming 
latencies of different types of words. In particular... why naming latency depends on the 
frequency of a word” (Plaut et al., 1996, 21). 
 

Although this sample of papers has not been entirely systematic, it is representative 
in that it covers three decades of work, four core areas of cognition (attention, memory, 
language and vision), many of the main players in the field and several types of paper 
(experiment, theoretical paper, and review). Certainly there are connectionist models of 
cognition that do not meet all four criteria (and perhaps some that meet none of the four). I 
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do not claim that this pattern is universal, merely typical, and as we’ll see later, some 
components can be dropped without greatly affecting the form of the inference. In the next 
section I offer an analysis of the kind of explanation offered by this sort of model. 
 
How Connectionist Models Explain 
 

Recall that classical AI’s explanations of cognition employ inference to the best 
explanation, which involves finding a candidate explanation, then, as Coltheart put it, resting 
on one’s laurels until a reasonable competitor comes along. Connectionist models of cognition 
not only provide the competition, but also make plain the methodological fragility of classical 
AI’s dependence on inference to the best explanation. As Sejnowski puts it, “Although a 
working model can help generate hypotheses, and rule some out, it cannot prove that the 
brain necessarily solves the problem in the same way” (Sejnowski et al., 1988, 1304). In other 
words, simulating the behavior only shows that you have a candidate explanation; it does not 
show that you have the right explanation, i.e., one that produces the behavior in the “same 
way.” 
 

For connectionists, the “same way” means looking to the anatomy and physiology of 
the brain, because whatever the right explanation of cognition is, it must be at least possible 
to implement it with brainy stuff. Connectionists talk about taking constraints from both 
physiology and psychology, as though they are employing an inferential pincer movement, 
narrowing the space of possibilities from two flanks at once (although search may not be an 
apt metaphor for model building, because the domain is infinite, and there are no halting 
conditions). 
 

A more promising way of understanding connectionist methodology is hinted at in 
each of the papers cited above. They all talk about the constraints they take from brains in 
terms of basic, or general principles. Here are some quotes to that effect: “modeling is often 
crucial if we are to understand the implications of certain kinds of basic principles of 
processing” (McClelland, 1988, 107); “connectionist modeling provides a rich set of general 
computational principles that can lead to new and useful ways of thinking about human 
performance” (Plaut et al., 1996, 2). “The study of simplifying models of the brain can 
provide a conceptual framework for isolating the basic computational problems and 
understanding the computational constraints that govern the design of the nervous system” 
(Sejnowski et al., 1988, 1300). The point is evidently not to model the brain in detail, but 
rather to model the basic processing principles used by the brain. 
 

McClelland et al. (1995) describe this strategy in their paper about why there are 
two learning systems in hippocampus and neocortex. They focus on the phenomenon of 
memory consolidation, a gradual process that can take many years. Their goal is a model of 
learning and memory that goes beyond just reproducing the observed phenomena. They want 
to make sense of why, from a design perspective, there are two separate memory systems, 
and to figure out what the functional importance of gradual consolidation is. They ask, “Is 
the phenomenon a reflection of an arbitrary property of the nervous system, or does it reflect 
some crucial aspect of the mechanisms of learning and memory? Is the fact that 
consolidation can take quite a long time—up to 15 years or more in some cases—just an 
arbitrary parameter, or does it reflect an important design principle?” (McClelland et al., 
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1995, 419). 
 

In cases like this, some details, like the timing of consolidation, take on particular 
importance for figuring out how a phenomenon is produced. Models recreate select 
physiological or anatomical details of their target systems, not to strengthen the inference 
from model to target slightly, as in Inference 3, but in order to test the significance of those 
details. If that detail is changed, is there a qualitative change in overall performance? An 
arbitrary property can be altered without a qualitative change in performance, but a crucial 
aspect of the mechanism cannot. Instead of acting as piecemeal support for the theory, these 
details are used to probe the design of the mechanism. 
 

Talk of mechanisms, as in the quote from McClelland et al. (1995) above, is common 
in discussions of connectionist methodology, but not so in classical AI, where algorithms are 
the main concern. For connectionists, producing the behavior in the “same way” means more 
than just having the right algorithm. While an algorithm provides a schematic specification 
of processes or activities and their coordination, a mechanism specifies both the algorithm 
plus the entities or parts involved in these activities, and their organization. (For accounts of 
mechanism, see Machamer et al. (2000); Glennan (2002); Bechtel and Abrahamsen (2005).) 
Machamer et al. (2000) stress this dualist nature of mechanisms. 
 

The anatomical facts that are recreated in connectionist models provide a schematic 
specification of mechanism entities. Entities in mechanisms are not to be confused with 
implementation details. Rather than being specific details about the hardware or software on 
which an algorithm is run, mechanism entities are more like the types of structures required by an 
algorithm. A sorting algorithm might require a memory store and a read/write device, for 
example. A description of a mechanism makes explicit those entities that an algorithm takes for 
granted. 
 

This focus on mechanisms rather than algorithms also helps explain why a fair bit of 
attention is paid to simulating neurological damage in connectionist modeling. One way of 
testing whether a property is an arbitrary or crucial feature of a mechanism’s design is to see 
what happens when you remove or break it.  Cognitive neuropsychology is the study of “what 
one can learn about the organization of the cognitive system from observing the behavior of 
neurological patients” (Shallice, 2001, 2128). By analyzing the kinds of cognitive deficits 
represented in neurological case studies, one can construct hypotheses about how cognitive 
mechanisms are designed.  Connectionist modeling incorporates this strategy. 
 

Traditionally neuropsychology depends on the assumption that cognitive functions are 
localized to specific brain regions, so that injuries affecting discrete brain regions can be 
correlated with deficits in specific cognitive functions.  Historically, the affected brain regions 
would be assessed postmortem, but contemporary cognitive neuropsychology also makes use 
of neuroimaging data to localize lesions. 
 
The logic involved in using data from cognitive neuropsychology to develop cognitive theories 
has been discussed at length elsewhere (Shallice, 1988; Bub, 1994a,b; Glymour, 1994). In 
this literature brain anatomy and physiology are represented abstractly as directed graphs, 
where nodes correspond to anatomical locations that perform particular functions, and edges 
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correspond to connections between these functional units, through which data is 
communicated. Lesions to different parts of the graph then give rise to distinct functional 
disturbances. For instance, in one of the field’s pioneering papers, Lichtheim (1885) posits 
that a lesion to the “centre of motor representation of words” would give rise to symptoms like 
“Loss of (a) volitional speech; (b) repetition of words; (c) reading aloud...” (Lichtheim, 1885, 
320). For each neurological subject, there must be a way of lesioning the graph such that the 
available paths through the graph correspond to the profile of that patient, i.e., their 
characteristic set of capacities. 
 

The upshot  of  these  methodological discussions in cognitive neuropsychology is as 
follows. Consider the possible cognitive theories as a set of possible directed graphs. Given 
sufficient lesion data, the correct theory should be a minimal graph whose set of path-sets 
contain all the profiles corresponding to dissociations seen in the neurological data (Bub, 
1994a, 850). As a shorthand, I’ll write this as TN =min GN , where TN stands for the cognitive 
model, and GN refers to the set of graphs that can account for neurological data N . (As 
Glymour (1994) points out, TN may not be unique.) 

 
Connectionist models are more powerful than traditional cognitive neuropsychology, 

because they are not limited by the availability of neurological subjects with specific injuries, 
and they need not assume localizability of functions. Localized injuries can be simulated by 
damaging all the nodes in one region of the network. Other sorts of injuries can be simulated 
by modifying the network as a whole, such as by adding noise, changing connection weights, 
or adjusting the learning rule. 
 

Connectionist modeling efforts do not use the formal approach of choosing minimal 
graphs, but share cognitive neuropsychology’s rationale for simulating neurological data. 
Intuitively, the approach requires that the mechanism be such that there are distinct ways of 
damaging it that would result in each of the patterns of neurological deficits that have been 
observed, without being unnecessarily complex. (How to assess the complexity of a 
mechanism is a good question, but one I’ll leave unanswered.) The wrong mechanism would 
yield a qualitatively different pattern of deficits. In cognitive neuropsychology, brain regions 
and their connections are treated abstractly as nodes and connections in graphs, but still can 
tell us a lot about cognitive architecture. 
 

Connectionist models are likewise abstract yet informative about cognitive 
architecture. They are reusable, multi-purpose tools that can be reconfigured in a variety of 
contexts. As McClelland et al. say of their model, “These are not detailed neural models; 
rather, they illustrate, at an abstract level, what we take consolidation to be about 
(McClelland et al., 1995, 420). That connectionist models are abstract or idealized is 
sometimes raised as a criticism; if connectionist models were supposed to explain the way 
true simulations do, their lack of realistic detail would be a serious problem. However, 
connectionist models aim to discover only the generic properties of the mechanisms they 
implement, not all the details. The reasoning involved in discovering how generic mechanisms 
work is nothing new; in fact, it was described by Mill (1843). 
 
According to Mill, in order to analyze causes and effects, we must first decompose each 
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scenario into single facts (which for Mill can be states of affairs, events, or propositions). 
What counts as a single fact, or how far down we have to go in the decomposition, depends 
on our purpose (Mill, 1843, III: 187). We then observe which facts cause which others by 
observing which follow from which, as circumstances vary. The advantage of experiments is 
that “When we have insulated the phenomenon we’re investigating by placing it among known 
circumstances, we can vary the circumstances in any way we like, choosing the variations that 
we think have the best chance of bringing the laws of the phenomenon into a clear light” 
(Mill, 1843, III: 189). 
 

When a regularity is discovered, such that one set of facts (such as a particular 
arrangement of working parts) tends to be followed by another set of facts (such as a 
particular pattern of behaviors), we have what I’ll call a generic mechanism. According to a 
popular recent account, “Mechanisms are regular in that they work always or for the most 
part in the same way under the same conditions. The regularity is exhibited in the typical 
way that the mechanism runs from beginning to end” (Machamer et al., 2000, 3). 
Mechanisms may operate regularly only within certain ranges of parameter values, and the 
sameness of their results may be qualitative, or likewise specify a range of values. In general, 
they are like causes tending to produce like effects. Although they are loosely defined and not 
perfectly predictable, generic mechanisms are useful in a variety of contexts. 
 

An illustrative example is lateral inhibition, which was first described in retinal 
ganglion cells (Hartline, 1940b,a), but later discovered to be “ubiquitous to all sensory areas 
of the brain” (Macknik and Martinez-Conde, 2009). Retinal ganglion cells have inhibitory 
connections to their immediate neighbors. The strength of the inhibitory signal is 
proportional to the activation of the cell the signal originates in. This means that when one 
cell is stimulated, its neighbors are inhibited. For a cell to fire strongly, most of its neighbors 
can’t also be stimulated. Retinal ganglion cells respond to object contours or edges, which 
are characterized by abrupt changes in illumination. Compared to neurons in the middle of 
uniform patches of illumination, which are inhibited by all of their neighbors, neurons at 
edges receive less inhibition, so have higher relative activity. This tends to sharpen responses 
even further, because this activation and inhibition is ongoing. As a result, even fairly faint 
edges are sharpened. 
 
 The lateral inhibition mechanism has been used to explain several other biological 
phenomena where contrasts are detected or enhanced. One example is cell type differentiation 
in embryology. Cells that start to develop earliest, and are on track to specialize for a 
particular purpose, such as forming a particular organ, send out protein signals that act as 
chemical inhibitors. These inhibitory proteins prevent surrounding cells from taking on the 
same job, which means that the neighboring cells specialize for something different. Small 
initial differences in developmental schedules make for stark contrasts in developmental 
outcomes. 
 

There are also economic and sociological analogues. If communities decide to focus 
their limited resources on their most promising students or athletes, and if the amount of 
investment made is in proportion to their skills, this results in a widening of the gap between 
the skills of the most promising and the rest. In this sort of scenario, the most promising 
students or athletes get more resources to the detriment of less promising ones, which makes 
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the best improve more quickly, further widening the skill gap between stars and non-stars.1 
Another example is the convention that ping-pong or pool tables in pubs are kept by the 
winner of a match. This means that the better players improve more quickly, because they 
get more practice, at the expense of mediocre players who get less practice in virtue of being 
kicked off the table after each try. 
 

These examples vary widely in their details, but all share some very general structural 
properties, and have qualitatively similar effects. This is the sort of general processing 
principle that connectionist models are designed to discover and explore. First we discover, 
through a combination of mathematical demonstration and empirical observation, that a 
certain type of mechanism (e.g., networks with inhibitory connections among neighbors) 
tends to give rise to a certain type of behavior (e.g., contrast enhancement). We then make 
use of that knowledge to make sense of how brain structures (e.g., the retina) give rise to 
cognitive phenomena (e.g., edge detection). 
 

The connection between the target system T and our model T∗  is that both instantiate 
the same general mechanism type. We can infer that the properties of the one apply to the 
other based on their shared type membership. For instance, the actual retinal ganglion cell 
network and our connectionist model of it both belong to the general type of lateral 
inhibition networks. We can explore the properties of the type using the model T∗, then 
infer that the properties we observe, O∗,  also belong to the target system T . 
The first part of the strategy is making novel empirical predictions. The gap between T∗  and 
T can be narrowed not only by showing that the model confirms the observations made in the 
target system, or T∗  → O, but also by showing that predictions work in the opposite 
direction.  Confirming the predictions of the model in the target system, does two things: it 
rules out gerrymandered models that are designed to give the desired output without sharing 
underlying properties, and it shows that the similarities between theory and model run in 
both directions. The latter builds confidence that the model and theory belong to the same 
type. Being the same type of mechanism also involves sharing the entities that are crucial to 
the design of the mechanism, having qualitatively similar behavior, and having the same 
pattern of breakdown when damaged.  
 

Because connectionist models are used during many stages of research, there is no  
single inference type that fits all cases. One important example is inferring that an established 
model can predict the behavior of a target system, In this case, the form of the inference might 
look like this: 

T∗  → O∗    T, T∗  ∈ MT 

T  → O∗  .  (4) 
 

The first premise states that the model produces a set of predicted observations O∗ . 
The second premise states that the model and target system instantiate the same mechanism 

                                                        
1 This was rumored to be the case in a figure skating club near my childhood home, where 
1988 Olympic silver medalist Elizabeth Manley trained. 
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type MT . Using the logic of tendencies, we can infer that like causes (T and T∗) should have 
like effects, so the model’s predictions, O∗ , should also be true in the target system.  
Another example is inferring that the model is adequate, given what is known about the target 
system. In this case, the form of the inference might look like this: 

 T → O        T,  T∗  ∈ MT 

 
T∗   → O . (5) 

 
As with any inductive inferences, explanations using the logic of tendencies are 

susceptible to error. First, if the mechanism’s operation is not very regular or reliable (for 
example, a stochastic mechanism), the model may predict different outcomes than the target 
in some cases, despite both being examples of the same mechanism type. Second, the output 
of the model is never exactly the same as the target phenomenon, so additional arguments 
are sometimes needed to establish that they are similar enough. The details left out will 
sometimes make a difference. Third, the experimental and neurological data on which 
assumptions about the design of the mechanism are based are of course incomplete, so a 
model that is adequate at one time can be ruled out by later evidence.   
 

Given this new understanding of how connectionist models work and what the risks of 
error are, we can rethink the sorts of criticisms of connectionist models that are and aren’t 
viable. For stochastic mechanisms, we should look for results that summarize probability 
distributions over many randomized trials rather than single runs. Because some details will 
always differ between model and target, results should be considered tentative until several 
variations with different details and assumptions all agree. Both of these suggestions are 
already standard practice in connectionist modeling. A more novel result is that blanket 
criticisms of connectionist models as either too detailed or not detailed enough are off the 
mark, as long as the level of detail is appropriate to the research question. Very detailed 
models are not only less widely applicable, but also more susceptible to being overridden by 
new discoveries in neurophysiology. We should expect earlier models to be more abstract, and 
later models to be more detailed about select parts of the mechanism. This pattern is 
already apparent in connectionist modeling research. Often it is the more general models 
rather than the more specific that receive the most critical attention, but it should be the 
reverse. 

 
Despite these caveats, connectionist modeling is a powerful and nuanced set of 

methods that allow for the possibility of explaining cognition at many scales of generality or 
specificity. It can also offer explanations of how and why cognitive deficits occur as a result of 
particular sorts of brain lesions, which promises clinical payoffs. 
 
Conclusion 
 

I began by offering formal accounts of how classical AI and true simulations explain. 
Classical AI uses inference to the best explanation, as was clear from the methodological 
claims made in both older and contemporary sources. Simulation tries to deduce predictions 
from detailed bottom-up models. Connectionist models are puzzling in that they seem to try 



14  

to do a little of each, which should undermine both modes of explanation. 
 

I arrived at a four-part analysis of the explanatory features of connectionist models. 
First, details of the neurophysiology of the brain are built into the models. Second, the 
output of the models reproduce known psychological data. Third, damaging the models 
reproduces patterns of deficits found in neurological cases. Finally, good models make novel 
empirical predictions that can be experimentally verified. I noted that connectionist models 
are intended to explore the generic mechanisms operating in the brain, and illustrated the 
relevant notion of mechanism with the example of lateral inhibition. 
 

I then constructed a formal analysis of the explanations offered, which interprets 
connectionist models and the cognitive theories they represent as sharing membership in a type 
of mechanism. The inferences made from connectionist models to cognitive phenomena can be 
understood as involving the logic of tendencies. Models and targets that instantiate the same 
general mechanisms can be expected to have similar output. 
 

One of the motivations for offering an account of how connectionist models explain is 
that doubts have been raised as to whether they are relevant to cognition at all. Although 
connectionist models have been contributing to our understanding of the mind for several 
decades now, there has been little understanding of how they work. I hope that this chapter 
will shed some light on this question. 
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